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Abstract: Intersections are the weakest link in tram operations, where collisions
between trams and cars often occur. This paper proposes an intersection object detection
algorithm based on camera and radar data fusion using the method of Intersection over
Minimum. For camera, this paper proposes a method of constructing the Total Object List
for inter-frame target matching, which realizes the measurement of position and velocity.
For radar, a combined filtering method is proposed in this paper to improve the detection
rate. After experimental tests, it can be seen that the intersection object detection algorithm
proposed in this paper makes up for the shortcomings of a single sensor and shows a higher
overall performance.

1. Introduction

With the advancement of urbanization in China, the operating mileage of trams is rapidly increasing.
However, intersections are the weakest link in tram operations. As of 2018, the operating mileage of
trams has reached 327.1 kilometers, increased by 91.13 kilometers in 2018, which means that the
operating mileage for two consecutive years has increased by more than 30%. Traffic junctions are
areas where trams and motor vehicles have joint ownership, and are the key sections of the accident.
In 2018, in Wuhan Optics Valley, there were four collisions between trams and cars. Most of the
accidents were caused by illegal intrusion of cars and insufficient braking distance of trams.
Therefore, it is of great significance to develop an intersection object detection system to prevent
obstacles from invading the intersection in front of the train.

At present, at home and abroad, Honeywell has developed a Radar scan system based on scanning
radar. IHI developed a 3-D laser radar system based on laser radar. Crossing obstacle detection
technology based on image recognition was developed by Japanese company. The detection method
based on the ground induction loop has limitations such as damage to the road surface and single
detection type[1, 2]. The advantages of the infrared-based detection method are low cost and strong
penetration in foggy weather, but its anti-interference ability is weak and it is greatly affected by
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weather conditions[3]. In summary, the millimeter-wave radar has strong anti-interference ability for
rain and snow weather, but it cannot perform identification analysis[4-7]. As a more universal and
widely popularized technology, video recognition can accurately classify objects[8, 9]. Therefore,
this paper will use the image recognition and millimeter wave radar fusion scheme for research.

2. Algorithm

An intersection object detection algorithm based on camera and radar data fusion using the method
of ‘Intersection over Minimum’ (IoM) is proposed in this paper. The system contains a camera and
a millimeter-wave radar, and its structure is illustrated as Figure 1. The camera is used to obtain 2D
data and the radar is to obtain the 3D data of object velocity and distance to the system. The fusion
of 2D and 3D data can realize high accuracy and high dimension detection of invaders.
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Figure 1: The structure of the system.

2.1. The Hardware and the System Calibration

As shown in Figure 1, the reference frames involved in this paper includes Radar plane Reference
Frame (RRF) that is also the World Reference Frame (WRF) O. -x y, , the Target plane Reference
Frame (TRF) O, -x,y, and the camera Image plane Reference Frame (IRF) O-uv . The RRF is set at
the ground vertically corresponding to the radar, and it is used as the world reference frame. As the
objects detected by the camera and the radar need to fusion, the system structure parameters
describing the relationship between IRF and RRF need to calibrate.

The calibration is achieved by a planar chessboard target. First, the coordinate axis of TRF and
the RRF are set parallel artificially, and the translation vector of the two reference frames is
measured using meter ruler. After that, the homography matrix H, between TRF and RRF is

obtained:
P-H,P (1)

where the ¥ is the feature point coordinate in the TRF and the P. in the RRF.
Then, the image of target is captured using camera, and at least 4 feature points are extracted from

the image. According to[10], the homography matrix H, between TRF and IRF can be obtained. v
satisfies the following formula:

p=H,/P (2)
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The p is the feature point coordinate in the IRF.

Therefore, the target can be used as the intermediary to calculate homography matrix H,; petween
RRF and IRF:

H, =HH,
ri t r (3)

And

p=H_ P (4)

ritr

So far, the calibration of the system structure parameters has been completed.
2.2. Camera Data Reception

In this paper, the camera is used to capture the images in the intersection scene in real time, and the
YOLOV3 neural network model is used to detect the images collected by the camera frame by frame.
YOLOV3 is a One-Stage object detection network with high real-time performance, which turns the
object detection problem into a regression problem and solves it[11]. The backbone of the YOLOv3
i1s Darknet-53, which uses a full convolutional structure. The size of the tensor in the forward
propagation process is changed by changing the stride of the convolution kernel. It also uses the
layer-hopping connection method like ResNet to ensure that the network structure can still converge
even though it’s very deep. YOLOV3 uses a multi-scale prediction method similar to FPN, using 13
x 13, 26 x 26, and 52 x 52 feature maps. Multi-scale prediction can make YOLOv3 have higher
accuracy when detecting objects of different scales.

The images collected by the camera are detected frame by frame to obtain the category
information and position coordinate information of each object in each frame. Objects in two
adjacent frames are matched to find the correspondence between the same object. This article adopts
the method of constructing the Total Object List (TOL), and uses the sum of Euclidean distances as a
measurement to match the objects of two adjacent frames. The TOL is a list that stores object
information in the scene, including the ID, category, number of missed detections, position
coordinates, and detection time of each object. The position coordinates are calculated from image
coordinates using the homography matrix H,. The TOL stores the objects information of multiple

frames. For the image coordinate [u, v] of an object, its corresponding world coordinate [X, Y] is
calculated using Eq. (5).

g ©)

X
Y|=H,
1
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H,i s the homography matrix from the radar coordinate system to the image coordinate system.

For the objects detected in the current image, the world coordinates are arranged to get their total
permutations. Take one of the permutations, which represents the correspondence between the world
coordinates of each object in the current image and those in the TOL. Calculate their Euclidean
distances, and add the results. Each permutation corresponds to a sum of Euclidean distances, and
the permutation corresponding to the minimum value is the best matching result of the objects in the
current frame and those in the TOL. If the number of objects in the current frame is not equal to the
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number of objects in the TOL, you need to fill them up and record the Euclidean distance at the
corresponding position as 0 when calculating the sum of Euclidean distances. After finding the best
matching result, the current frame information of each object is added to the TOL.

If the number of objects in the current frame is not equal to the number of objects in the TOL, you
need to fill them up. When calculating the sum of Euclidean distances, record the Euclidean distance
of the corresponding position as 0, and add 1 to the number of missed detections. After finding the
best matching result, the current frame information of each object is added to the TOL, and objects
that have been missed too much are deleted.

With the real-time shooting of the camera, the TOL is constantly updated. When the number of
the information of an object in the TOL reaches a certain number, the speed of the object can be
calculated. The speed is calculated using the method of successive minus. Assume that an object has
N (N> 4 and N is even number) frames of the world coordinate information in the TOL. Calculate
the distances between the world coordinates of the first frame and N/2+1th frame, the second frame
and N/2+2th frame ... and the N/2th frame and the Nth frame. Divide the distances by the
corresponding time intervals, and take the average of each result, which is the speed of the object.

So far, the position and speed of each object detected by the camera are obtained.

2.3. Radar Data Reception

The millimeter wave radar sends out pauses at a frequency and receives echoes to detect the objects.
The Doppler principle and FMCW technique are used to complete the object velocity measurement.
However, the original information received by the radar has serious misdetections and leak
detections. This phenomenon is particularly serious in indoor spaces affected by wall reflections. To
this end, this paper proposes a combined filtering method, which includes two methods: Parameter
Matching Filtering (FMP) and Interframe Mutual information Filtering (IMF).

PMF refers to the completion of filtering by determining whether the object position and velocity
returned by two adjacent frames of the radar match. Based on a large number of experiments, it is
observed that there are two conditions occurring frequently under the influence of reflection or other
conditions that (1) the ultra-low speed objects are detected and (2) the velocity and displacement do
not match. Aimed at condition (1), the object whose velocity is lower than a certain threshold will be
filtered out. and for condition (2), the object will be filtered out whose difference of the detected
displacement and the calculated theoretical displacement of two adjacent frames exceed the
threshold.

i Not appear in
one frame

*‘* Append List waiting ¥

disappear in

" ¥ Re-appear in one
one frame

frame (n< M)

Figure 2: The basic flow of IMF.

IMF means that if an object appears for multiple consecutive frames, it is considered to be a real
target for stable detection. In addition, if the object disappears for multiple consecutive frames, it is
considered to be completely disappeared instead of being instantaneously missed, and then removed.
Adding the time dimension on the basis of the space dimension, and using the mutual information
between multiple frames to achieve the object stable detection, can greatly reduce the rate of missed
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detection and false detection. The basic flow is shown in Figure 2, when one object appears for the
first time, it will be added to the Append List (AL), and only when the objects in the AL appears for

Now  frames consecutively, they can be add to the Output List (OL). However, if the object
disappears for some on frame during in the AL, it will be removed and recount when it appears again.
When one object in the OL disappears in some one frame, it will be added to the Remove List (RL)

at first, and for the objects in the RL, only when they disappear for Now frames, they are regarded as

disappearance really, and then will be removed. If one object in the RL appears again, it will return
to the OL, and the disappearance will be treated as missed detection.

2.4. Algorithm of Camera and Radar Fusion

The fusion of camera data and radar data requires the synchronization in space and time. The
synchronization of space requires camera and radar have the common field of view and the structure
parameters of them should be calibrated, which are used to convert radar detection result from radar
reference frame to camera image reference frame. The calibration can be realized by the method
described in the Section 2.1. The synchronization of time requires the acquisition of camera data and
radar data should be synchronized, which can be realized by multi-thread process. The processing of
real-time camera data acquisition and fusion can be implemented in the main thread, and the
processing of radar data acquisition and filtering in the separate thread.

The match and data fusion of camera and radar fusion is achieved by the method of ‘Intersection
over Minimum’ (IoM). The output of camera data processing contains the position in the image, the
class as well as the distance and the velocity calculated by the homography matrices, while the
output of radar contains the precise distance and velocity of the objects. In the fusion, the objects of
the sensors should be matched first, and for the ones detected by the camera and the radar at the
same time, their distance and velocity information come from radar and others from camera.

The match of the objects obeys the principle of the IoM. The IoM is defined as the ratio of the
intersection of two rectangle areas and the minimum square between them. The definition is stated as
Eq. (6), and the illustration is as Figure 3.

__SiNS,
oM = in(s,.5,) ©)

The IoM refers to the intersection over the minimum of two rectangular areas. 5+ and 5 are the

areas of two rectangles, respectively. This calculation method can measure the degree of coincidence
of two rectangles, which determine whether the two rectangles represent the same area. At the same
time, compared with the method of IoU, the IoM can alleviate the calculating failure problems
caused by the large difference between the areas of the two rectangles.

Matching succeeds when Matching succeeds when
the sizes of the two boxes the difference of the sizes
are similiar. of the two boxes is large.

Matching fails

camera detection radar detection e
1oM results

results results

Figure 3: The illustration of IoM.

227



Among them, scale is the scaling factor of the bounding box. The specific bounding box size is

scale[w.h] . And y is the y coordinate of the object detected by the radar in radar coordinate system.

After expanding the radar object position into an area, according to the IoM calculation formula,
go through all radar objects and all camera objects in the current frame to determine whether there

are object pairs which satisfy oM > Tyuon Tosion refers to the threshold value for determining whether

the object is the same object according to the IoM. If the same pair of objects are determined
consecutively, the radar and camera are considered to have detected the same object together, and the
object size and category information of the camera are fused with the distance and speed information
detected by the radar to obtain the complete information of the object. Otherwise, it is considered to
be a false detection by a single device and will not be fused. Finally, all fusion objects are used as the
final fusion output result of the current frame.

Figure 4: (a) A part of radar detection results. (b) A part of camera detection results. (c) A part of
fusion results.

3.  Experiment Results

Experiments of the proposed detection system are conducted indoors. In the experiment, the
landmarks are arranged on the ground. When object moves to the landmarks, data collection is
carried out. Namely, the original output of radar and camera, as well as the fusion output. We
collected 2400 groups of experimental data. Figure 5 shows the proposed detection system.
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Figure 5: The proposed detection system.

Figure 4 is a part of radar detection results, camera detection results, and fusion results. It can be
seen that when the radar works alone, the detection effect on distant objects and dense objects is not
good, causing missed detection. The detection effect of the camera is better than that of the radar,
and the positions of the bounding boxes are more accurate. The fusion result absorbs the advantages
of camera detection and makes up for the shortcomings of radar in detection rate.

Figure 6 is a bird's-eye view of a part of experimental results. The area is 20m % 10m. The red dot
represents the real position of the object, the blue dot represents the position detected by the radar,
and the yellow dot represents the position detected by the camera. It can be seen that compared with
the camera, the position detected by the radar is closer to the real position, and the position error is
smaller. The result of the fusion uses the object position obtained by radar detection, which absorbs
the advantages of radar detection and makes up for the lack of position measurement accuracy of the
camera.

In Table 1, we compare the proposed method with camera-based method, radar-based method and
fusion-based method.

Table 1: Comparison of the three methods.

Sensors . Performgnce .
Detection Rate Miss Rate Mistake Rate
Radar 77.11% 22.89% 3.04%
Camera 98.93% 1.07% 2.87%
Fusion 99.59% 0.41% 5.91%

229



Figure 6: A bird's-eye view of a part of experimental results.

From Table 1, the detection rate of Radar is significantly lower than Camera. What’s more, the
miss rate of Radar is significantly higher than Camera. Since the columns and walls affects radar
signals in transmission, radar cannot achieve equivalent results than camera. Comparing with these
methods based on single sensor, sensor fusion method perform best in detection. What’s more, miss
rate is decreased via sensor fusion method. Although mistake rate of sensor fusion method if slightly
higher than camera-based method, it is the most accurate method comprehensively.

Position measurement error in different distance level is analyzed in Figure 7. As shown in Figure
7, the position measurement error of radar-based method is higher than that of camera-based method,

especially at long distance.

It is worth noting that, sensor fusion method is able to further improve

the position measurement accuracy at long distance. Thereafter, position measurement accuracy of
sensor fusion method is more accurate and stable than single sensor method.

Figure 7:
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Velocity measurement error in different distance level is analyzed in Figure 8. As shown in Figure
8, velocity measurement error of sensor fusion method is less than camera-based method and radar-
based method in most cases. In general, sensor fusion method is able to improve velocity
measurement accuracy.
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Figure 8: Velocity measurement error in different distance level.

4. Conclusions

This paper proposes a detection algorithm based on the IoM. The IoM is used to fuse radar and
camera data to achieve the matching and fusion of homologous data. For cameras, this paper
proposes a method for constructing the Total Object List for inter-frame object matching and
implements position and velocity measurement based on a monocular camera. For radar, a
combination filtering method is proposed in this paper, which improves the detection rate and
reduces the false detection rate.

The experimental results show that the sensor fusion method used in the intersection object
detection system can make up for the shortcomings of a single sensor. Compared with a single
sensor, sensor fusion complements the measurement results of each sensor, and improves
performance indicators such as detection rate, position measurement accuracy, and speed
measurement accuracy. Under the complicated conditions of intersection scenes, this method can
reduce the influence of interference, and the detection results are more reliable.
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